MLKD's Participation at the ImageCLEF 2011 Photo Annotation and Concept-Based Retrieval Tasks

0		
Μ	L	
&	K	D

Eleftherios Spyromitros-Xioufis, Konstantinos Sechidis, Grigorios Tsoumakas and Ioannis Vlahavas Machine Learning and Knowledge Discovery Group, Department of Informatics, Aristotle University of Thessaloniki, Greece

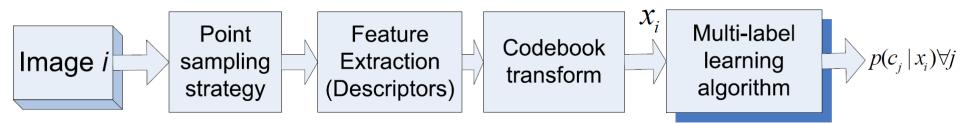
Setup Visual Textual Multi-modal Thresholding

Photo annotation task

- A multi-label classification problem (each image belongs to many concepts)
- Evaluation measures:
 - 1. Mean interpolated average precision (MIAP)
 - 2. Example-based F-measure (F-ex)
 - 3. Semantic R-precision (SR-Precision)
- Model selection: based on Mean Average Precision (MAP)
- MAP estimation: <u>3 fold cross-validation on the 8000 training images</u>
- 5 submissions in total:
 - Visual
 - Textual
 - Multi-modal (3 variations)

Setup Visual Textual Multi-modal Thresholding

Visual model – feature extraction



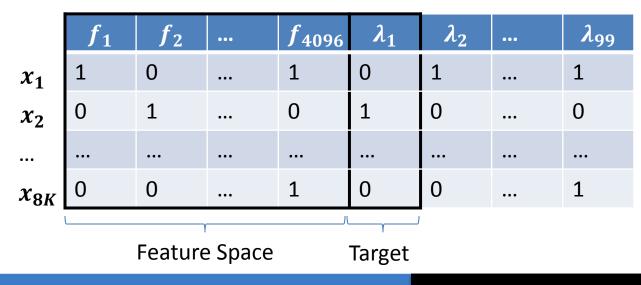
- The ColorDescriptor [van de Sande et al., 2010] software was used for visual feature extraction
- 2 point detection strategies: Harris-Laplace, Dense Sampling
- 7 descriptors: SIFT, HSV-SIFT, HueSIFT, OpponentSIFT, C-SIFT, rgSIFT and RGB-SIFT
- Codebook generation
 - K-means (other?) clustering on 250,000 randomly sampled points (more points?)
 - Codebook size (k) fixed to 4096 words (more words?)
 - Hard assignment of points to clusters
- 14 multi-label training datasets in total
 - #features: 4096
 - #labels: 99

Setup Visual Textual Multi-modal Thresholding

Visual model – learning method

- The **Binary Relevance** (problem transformation) method was used:
 - Transforms the multi-label classification task into multiple binary classification tasks
 - Any single-label classifier can be used (Random Forest #trees:150 #features:40)
 - Instance weighting to deal with class imbalance:

 $w_{min} = rac{min+maj}{min}$ $w_{maj} = rac{min+maj}{maj}$ Training set for λ_1



Setup Visual Textual Multi-modal Thresholding

Visual model – learning method

- The **Binary Relevance** (problem transformation) method was used:
 - Transforms the multi-label classification task into multiple binary classification tasks
 - Any single-label classifier can be used (Random Forest #trees:150 #features:40)
 - Instance weighting to deal with class imbalance:

 $w_{min} = rac{min+maj}{min}$ $w_{maj} = rac{min+maj}{maj}$ Training set for λ_2

	f_1	<i>f</i> ₂		<i>f</i> ₄₀₉₆	λ_1	λ_2	 λ99
x_1	1	0		1	0	1	 1
<i>x</i> ₂	0	1		0	1	0	 0
<i>x</i> _{8<i>K</i>}	0	0		1	0	0	 1
Feature Space Target							

Eleftherios Spyromitros–Xioufis | espyromi@csd.auth.gr

Setup Visual Textual Multi-modal Thresholding

Visual model – learning method

- The Binary Relevance (problem transformation) method was used:
 - Transforms the multi-label classification task into multiple binary classification tasks
 - Any single-label classifier can be used (Random Forest #trees:150 #features:40)
 - Instance weighting to deal with class imbalance:

 $w_{min} = rac{min+maj}{min}$ $w_{maj} = rac{min+maj}{maj}$ Training set for λ_{99}

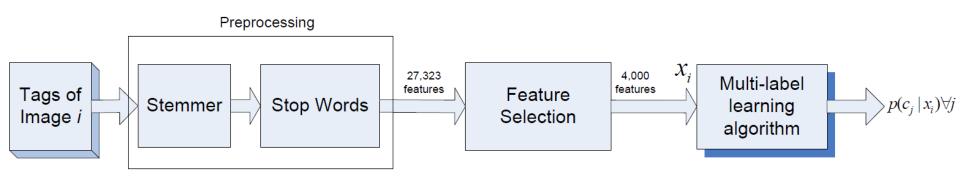
	f_1	f_2		<i>f</i> ₄₀₉₆	λ_1	λ_2	 λ99
x_1	1	0		1	0	1	 1
<i>x</i> ₂	0	1		0	1	0	 0
<i>x</i> _{8<i>K</i>}	0	0		1	0	0	 1
	Feature Space						Target

Eleftherios Spyromitros-Xioufis | espyromi@csd.auth.gr

6

Setup Visual Textual Multi-modal Thresholding

Textual model – feature extraction



- Flickr user tags were used
- Initial vocabulary: the union of tag sets of the training images
- Stemming : porter stemmer (English..) & stop word removal -> 27000 stems
- Feature selection using χ^2_{max} criterion [Lewis et al., 2004]:
 - χ^2 statistic for each feature with respect to each label is calculated
 - Features are ranked according to their maximum χ^2 score across all labels
 - After evaluation of different sizes top 4000 features were selected

Setup Visual Textual Multi-modal Thresholding

Textual model – learning method

- Ensemble of Classifier Chains (ECC) [Read et al., 2009]:
 - Random chains are created
 - Feature set for each label in the chains is augmented with the previous labels

Chain order: 1,2,..,99

• Able to capture correlations, class imbalance is still a problem

Training set for λ_1

Eleftherios Spyromitros–Xioufis | espyromi@csd.auth.gr CLEF 2011, 19-

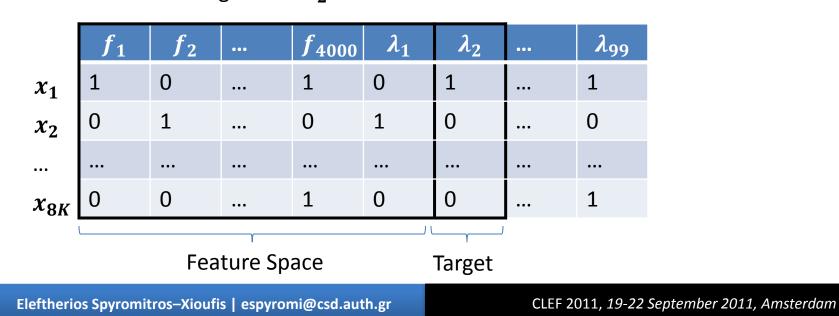
8

Setup Visual Textual Multi-modal Thresholding

Textual model – learning method

Training set for λ_2

- Ensemble of Classifier Chains (ECC) [Read et al., 2009]:
 - Random chains are created
 - Feature set for each label in the chains is augmented with the previous labels
 - Able to capture correlations, class imbalance is still a problem



Chain order: 1,2,..,99

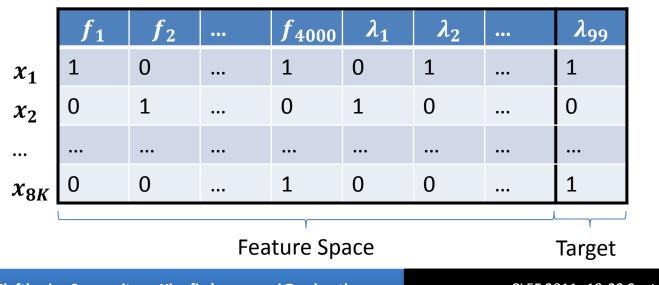
Setup Visual Textual Multi-modal Thresholding

Textual model – learning method

- ECC is also a problem transformation method:
 - Again coupled with Random Forest as base classifier (#trees:10, #features:default)

Chain order: 1,2,..,99

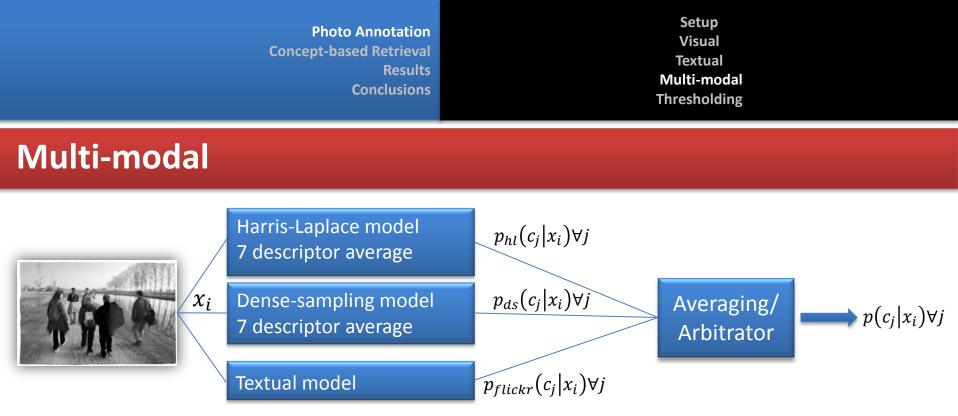
- Ensemble size: 15 (150 random trees in total for each label)
- Again instance weighting for class imbalance



Training set for λ_{99}

10

Eleftherios Spyromitros–Xioufis | espyromi@csd.auth.gr



- A hierarchical late fusion scheme:
 - 3 different views of the images:
 - Harris Laplace -> concepts related to objects (Fish and Ship)
 - Dense sampling -> concepts related to scenes (Night and Macro)
 - Textual -> concepts which are typically tagged by users (Dog , Insect, ...)
 - 2 ways to combine the 3 different views:
 - Averaging
 - Arbitrator (the best view based on internal evaluation)

Thresholding – from scores to bipartitions

Horse	Sport	Sky	Plants	Нарру	Graffiti	
0.76	0.63	0.44	0.33	0.25	0.10	
			t = 0.4			
Relevant			Irrelevant			
Horse, Sport, Sky			Plants, Happy, Graffiti			

- Scores are ok for evaluation on MIAP and SR-precision
- Example-based F-measure a bipartition of concepts to relevant and irrelevant
- The thresholding method described in [Read et al., 2009] was used:
 - A common threshold across all concepts
 - Provides a close approximation of the training set's label cardinality to the test set predictions:
 - $t = argmin_{\{t \in 0.00, 0.05, \dots, 1.00\}} |LC(D_{train}) LC(H_t(D_{test}))|$

Manual Automated

Concept-based retrieval

- 40 retrieval topics
 - Logical connections of the 99 concepts of the photo annotation task
 - E.g. "Find all images that depict a small group of persons in a landscape scenery showing trees and a river on a sunny day"
 - 2 to 5 example images are also given for each topic
- Goal:
 - A ranked list of the 1000 most relevant photos per topic
 - From a pool of 200.000 non-annotated images
- Evaluation measure:
 - Mean Average Precision, P@10, P@20, P@100, R-prec
- Two approaches:
 - Manual: Using the models learned on the training images
 - Automated: Using the example images

Manual approach

- Given
 - I = 1, ..., 200.000 the collection of retrieval images
 - Q = 1, ..., 40 the set of topics
- We apply out automated image annotation system to each image $i \in I$
 - Textual model + visual models built using only RGB-SIFT features
 - A 99-dimensional vector with relevance scores $S_i = [s_i^1, s_i^2, ..., s_i^{99}]$
- For each topic $q \in Q$
 - $P_q \subseteq C$, $N_q \subseteq C$ the sets of positively/negatively correlated concepts
 - For each concept c in $P_q \cup N_q$
 - $m_q^c \ge 1$ is a real valued parameter denoting the influence of c to q
- Finally for each topic q and image i, the scores of the relevant concepts are combined:

$$S_{q,i} = \prod_{c \in P_q} (s_i^c)^{m_q^c} \prod_{c \in N_q} (1 - s_i^c)^{m_q^c}$$

• The selection of related concepts and the setting of values for the m_q^c parameters was done using a trial-and-error approach (examining the top 10 retrieved images) 14

Manual Automated

Manual approach - example

Topic 5: rider on horse. *"Here we like to find photos of riders on a horse. So no sculptures or paintings* are relevant. The rider and horse can be also only in parts on the photo. It is important that the person is riding a horse and not standing next to it."

- Concepts 75 (Horse) and 8 (Sports) are positively related (rider on horse)
- Concept 63 (Visual_Arts) is negatively related (no sculptures or paintings)
- Therefore:
 - $P_5 = \{75, 8\}, N_5 = \{63\}$
 - $m_5^{75} = m_5^8 = m_5^{63} = 1$ (equal strength to all related concepts for this topic)

Manual Automated

Automated approach – query by example

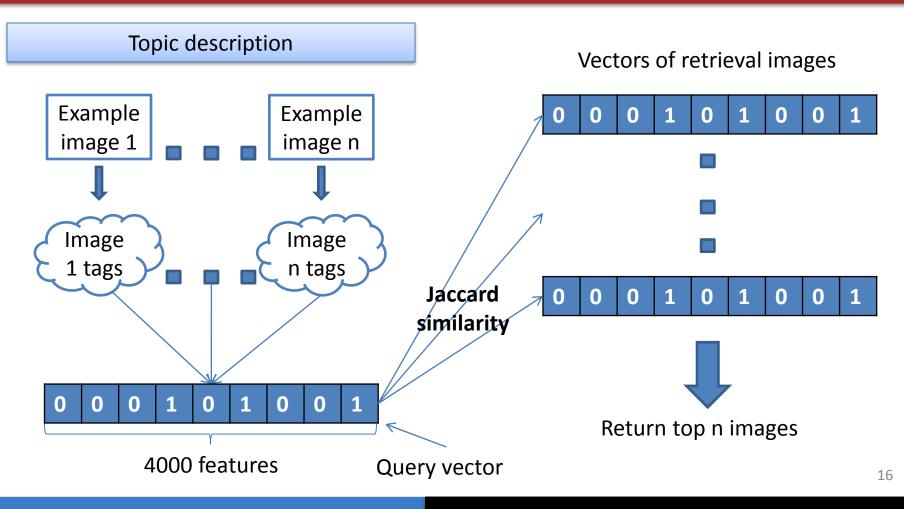


Photo annotation results Concept-based retrieval results

Photo annotation results

Approach	Team ranks - scores					
	ΜΙΑΡ	F-example	SR-Prec			
Visual	9 th /15 - 0.3114	5 th /15 – 0.5595	9 th /15 - 0.6981			
Textual	3 rd /7 – 0.3256	2 nd /7 - 0.5061	3 rd /7 – 0.6257			
Multi-modal	5 th /10 - 0.4016	5 th /10 - 0.5588	7 th /10 – 0.6982			
Overall	5 th /18 - 0.4016	7 th /18 - 0.5595	10 th /18 - 0.6982			

- Better in MIAP (model selection was based on Mean Average Precision)
- Averaging the multiple models worked better than arbitrating
- Good in textual bad in visual average overall

Photo annotation results Concept-based retrieval results

Concept-based retrieval results

Configuration	Submission ranks - scores						
	МАР	P@10	P@20	P@100	R-Prec		
Automated	1 st /16 - 0.0849	1 st /16 - 0.4100	1 st /16 - 0.2800	1 st /16 - 0.2188	1 st /16 - 0.1530		
Manual	1 st /15 - 0.1640	1 st /15 – 0.4175	1 st /15 - 0.3838	1 st /15 - 0.3180	1 st /15 - 0.2467		
Overall	1 st /31 - 0.1640	1 st /31 - 0.4175	1 st /31 - 0.3838	1 st /31 - 0.3180	1 st /31 - 0.2467		

- He are ranked 1st both in the automated and the manual retrieval approach
- Manual performs much better than automated on average
- Surprisingly automated performed better on 9 topics!

Conclusions – Future work

- Lessons learned:
 - We need collaboration with a computer vision/image group
 - Binary multi-label classification approaches work well:
 - Coupled with strong base learners (Random Forest)
 - Class imbalance issues should be handled
 - Measure specific model selection is needed:
 - Suggestion: more submissions should be allowed to the annotation task
- Future directions:
 - Better preprocessing of textual information (e.g. translate non-English tags)
 - Other hierarchical late fusion schemes more advanced arbitration techniques
 - Better thresholding approaches
 - Experiments with more multi-label methods and base classifiers
 - Explore why we performed so well in the concept-based retrieval task

THANK YOU! QUESTIONS?

CLEF 2011, 19-22 September 2011, Amsterdam

20

Software used - acknowledgements

- Software tools
 - Mulan (<u>http://mulan.sourceforge.net/</u>)
 - Multi-label classification, feature selection and thresholding methods
 - Evaluation Framework
 - ColorDescriptor (<u>http://koen.me/research/colordescriptors/</u>)
 - Image feature extraction
 - Weka (<u>http://www.cs.waikato.ac.nz/ml/weka/</u>)
 - Text preprocessing codebook generation (k-means clustering)
- Acknowledgements
 - PetaMedia: student travel support
 - European Science Foundation: student registration

Key references

- Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: A java library for multi-label learning. Journal of Machine Learning Research (JMLR) 12, 2411-2414 (July 12 2011)
- van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582{1596 (2010)
- Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Proc. 20th European Conference on Machine Learning (ECML 2009). pp. 254{269 (2009)
- Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361{397 (2004)